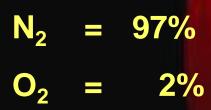


Controlled Atmosphere Technology


David Bishop Technical Director ICA Ltd

Apple Storage Life Weeks 5% CO2 16% O2 5% CO2 3% O2 1% CO2 2% O2 1% CO2 1.2% O2 1 CO2 1% O2

C.A. Store

$$CO_2 = 1\%$$

Insulated & Sealed Buildings Refrigeration

Atmosphere generation Measurement & Control

- Insulated Panels.....Europe, S Hemisphere
- Timber & spray- on foam.....Gt Lakes USA

External Loading stores

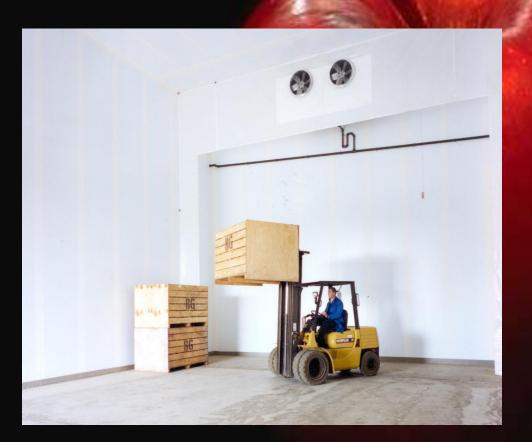
8 x 150 tonne CA apple stores, Back to back construction

Stand alone CA stores

2x 70 tonne CA apple stores, external panel construction

Internal panel stores

6 x internal 300 tonne vegetable stores


Large project

22 x internal 180 tonne CA stores stores

Internal design

Inside designed to accommodate bulk bins to ensure dense packing and good air circulation

An important key to successful storage in controlled atmospheres is a high quality, leak tight storage room.

Regular chill stores are designed for a maximum internal pressure of 1/2 inch water gauge. CA stores need to withstand 1 inch......

That is twice as strong!!!!!

CA stores MUST be leak tight and tested regularly.

Pressurise to 3/4 inch water, The pressure should take at least 7 minutes to fall to 1/2 inch.

A high quality room will hold up for 30 mins or more.

Doors

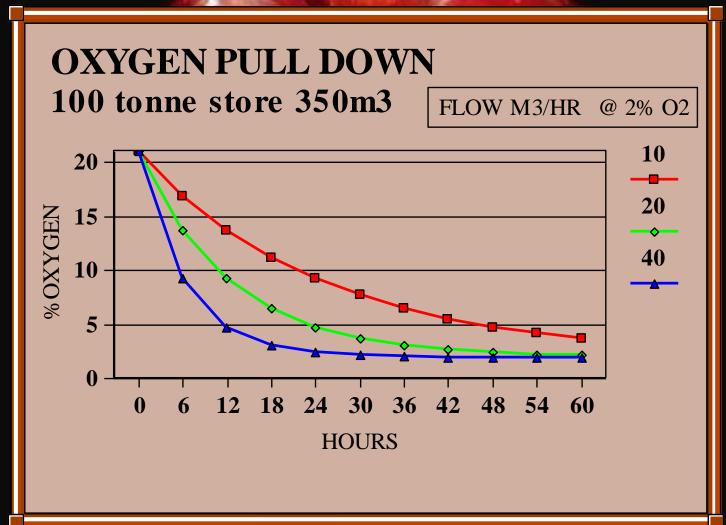
A properly designed CA door is an important factor in maintaining leak tight construction

Refrigeration

- MUST be designed for low water loss
- Sufficient cooling capacity to reduce temperature in 2-3 days
- Good air circulation to provide even temperatures
- Independent control of fan capacity
- Accurate temperature control of produce
- Safety controls to prevent freezing of product

Removal of Oxygen

Room MUST be leak tight


Natural Respiration

Bulk Nitrogen

Nitrogen Generators

Removal of Oxygen

Removal of Oxygen

Bank of modules for PSA nitrogen generator on large 22 room CA project

Removal of Carbon Dioxide

Depends on respiration rate.

Ventilation (not for low oxygen)

Hydrated Lime Ca(OH)₂

Carbon scrubbers

Nitrogen purge

Removal of Carbon Dioxide

Hydrated lime

Placed in store

Good for low CO2 storage

2 to 5% of product weight

Must be fresh

Removal of Carbon Dioxide

Carbon scrubber from Van Amerongen

Measurement

Temperature

Carbon Dioxide

0 to 15% accuracy +/- 0.2%

Oxygen

0-25% accuracy +/- 0.1%

Humidity

For low RH stores only

Thermometers

Precision thermistor

Best for fruit storage

Platinum resistance

OK but care with wiring

Thermocouple

Not suitable

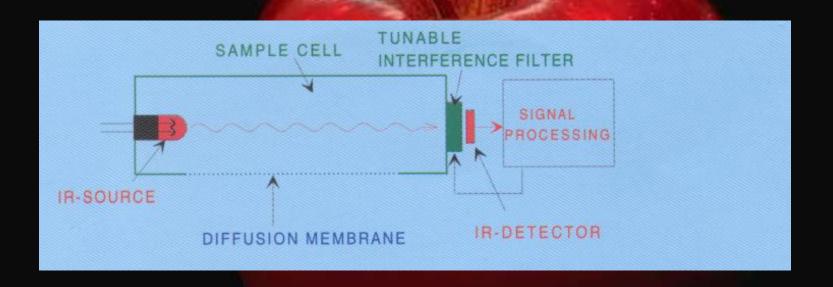
Thermometers

Measure air and at least 3 fruit temperatures in 100 tonnes of storage to an accuracy of 0.1° C

Humidity measurement

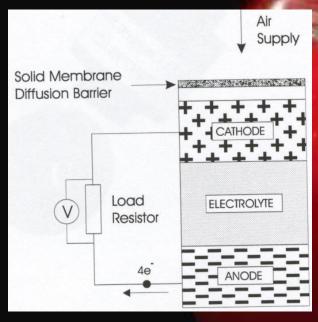
Typical accuracies:

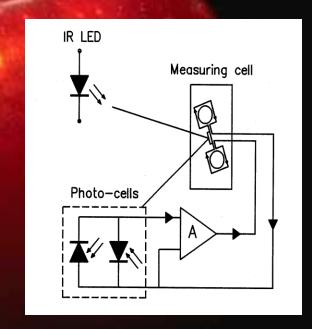
+/- 5% @ 95% RH


+/- 2% @ 60% RH

Not useful for regular high humidity storage.

Use for Onion storage at 60-70% RH

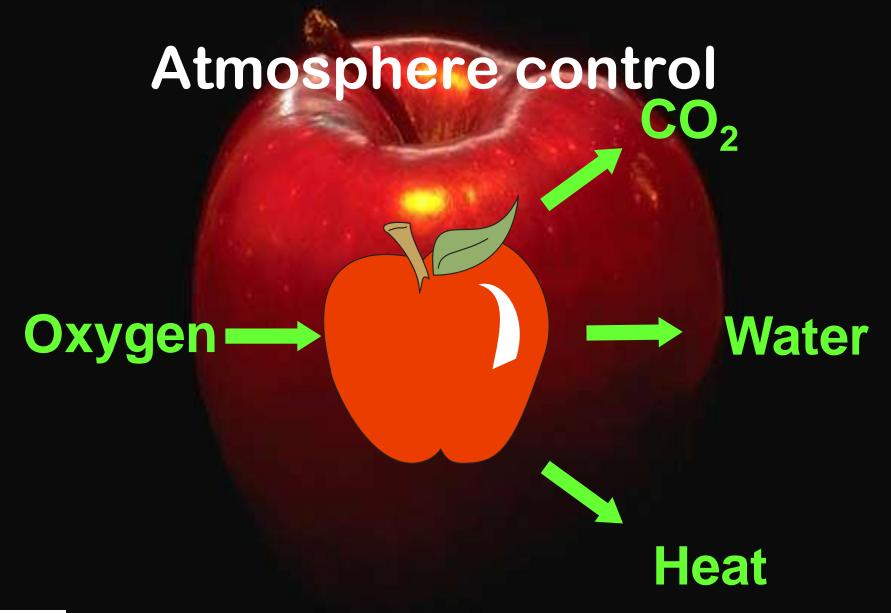

Carbon Dioxide


Infra Red only suitable method for fruit storage atmospheres

Oxygen

Electrochemical cell good. Replace cell every 2 years

Paramagnetic, excellent but expensive



Dual Analyser

Oxygen & Carbon Dioxide

Atmosphere control

1. Primary Control.

Ventilation to maintain O2 at required level...typically 2% control to +/- 0.2%

2. Secondary Control

Operation of machinery to maintain CO2 at correct level.....typically 3% control to +/- 0.5%

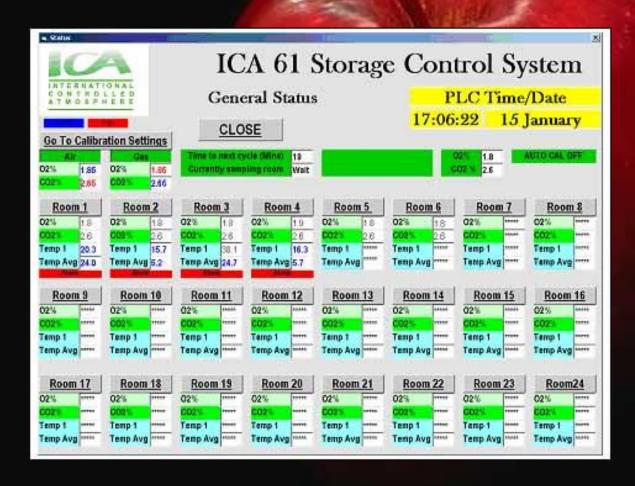
Atmosphere control

1. Primary Control.

Ventilation to maintain O_2 at required level ...typically 2%... control to +/- 0.2%

3. Initial Control

Nitrogen to pull down to say 5% O₂


Automatic control

Electronic control of O₂ and CO₂ with specially designed control systems

Automatic control

Electronic control of O₂ and CO₂ with specially designed control systems

To be successful CA must be implemented properly with close attention to detail

Planning a CA storage facility

Important Questions

- What products?
- What storage conditions?
- What size stores?

What packing method?

• What products?

Do not mix product in a single store at one time if at all possible

Build multi-purpose stores BUT be aware that Onions have different humidity needs to other fruit and vegetables

• What storage conditions ?

Need to know the following

- Recommended conditions for that product, cultivar & production area and achievable storage life.
- 2. Incoming product quality and storage potential

RUBBISH IN...RUBBISH OUT

• What size stores?

Chill stores can be large

- * Single temperature
 - * Multi product
 - * Full or empty
 - * Daily access

• What size stores?

CA stores are different!

- *Load & seal within 2-3 days
 - * Store should be full
- * Leave sealed until product needed
- * Unload, pack & distribute in 5-7 days

• What size stores?

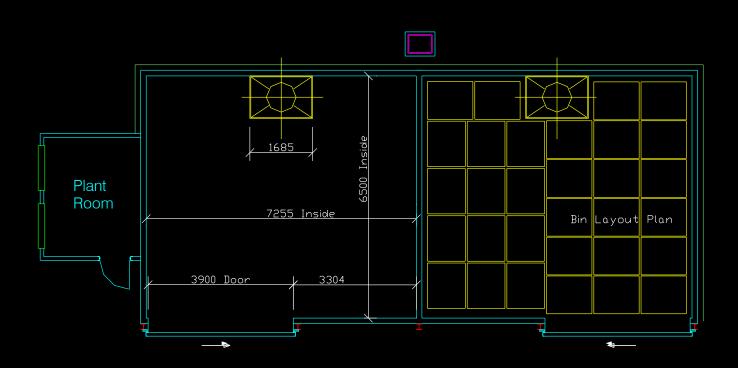
It is a common and often regretted mistake to build CA stores too large

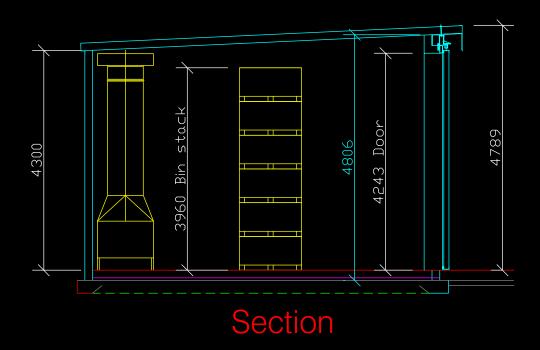
What packing method?

CA storage rooms should be designed for the packing that is going to be used and they should be full for successful operation

• What packing method?

• What packing method?


• What packing method?


Room Layout

Room Layout

Quality control

Produce should be regularly inspected to check progress

Quality control

Use sample hatch and nets for samples

Quality control

Penetrometer is used for checking quality

CA is LOW oxygen and HIGH CO2

This can causes
DEATH by
Asphyxiation

CA rooms must be kept secure at all times

- Designed to give best possible work flow
- All internal surfaces and fittings to meet "Food Safe" standards
- Insulation materials should meet insurance requirements

INTERNATIONAL CONTROLLED ATMOSPHERE

Tonbridge Kent UK

